rm(list = ls())
options(warn = -1)
library(readxl)
## Reading the data from excel
Project_2_Data <- read_excel(“Stat 481 Project 2 Data.xls”)
str(Project_2_Data)
## Cleaning and attributing the dtaa
Project_2_Data$courses = as.factor(Project_2_Data$courses)
Project_2_Data$gender = as.factor(Project_2_Data$gender)
levels(Project_2_Data$gender) <- c(“Female”, “Male”)
levels(Project_2_Data$courses) <- c(“Algebra”, “Algebra&Geometry”, “Calculus”)
attach(Project_2_Data)
## Descriptives
library(ggplot2)
library(hrbrthemes)
library(dplyr)
library(tidyr)
library(viridis)
temp = aggregate(score~courses+gender, Project_2_Data, FUN = mean)
qqnorm(score)
ggplot(Project_2_Data, aes(x = score)) + geom_histogram()
summary(Project_2_Data)
p1 <- ggplot(data=Project_2_Data, aes(x=score, fill=courses)) + geom_density(adjust=1.5, alpha=.4) + theme_ipsum()
p2 <- ggplot(data=Project_2_Data, aes(x=score, fill=gender)) + geom_density(adjust=1.5, alpha=.4) + theme_ipsum()
## Model
## Test of normality and other assumptions
ks.test(score, pnorm, mean = mean(score), sd= sd(score))
bartlett.test(score~courses, data = Project_2_Data)
bartlett.test(score~gender, data = Project_2_Data)
## Linear model
model1 = anova(score ~ courses + gender, data = Project_2_Data)
model1
summary(model1)
## Post Hoc
library(DescTools)
PostHocTest(model1, method = “bonferroni”)
PostHocTest(model1, method = “hsd”)